For a cleaner earth

Harmful Pollutant Erasing Soil Purifying Liquid

Characteristics of the purifying liquid

For a cleaner earth

Harmful pollutant erasing soil cleaning liquid

Turns soil that has been polluted by heavy metals and dioxins into a clean state in a short period.

Without using heat, applying pressure nor producing any carbon dioxid making it a very environmentally friendly purification method.

Noneed of any expert knowledge/ expertise as it can be set up easily with common construction machines at the place of use.

Purification aid liquid

This liquid can break down molecules to 2 nano-sizes. It is composed of chemical enzyme generating liquid and refined water. It breaks up the benzene ring to safely do oxidative decomposition. (oxidative decomposition using liquids with nitric acid added to it are known, but to clean the soil,

our recommended molecule break down liquid

Purification process

Rivers, canals, waterways for different uses, lakes and ponds, ports, different treating centre's, different disposal sites, different incineration centres, factories, residential areas and agricultural land

Polluted

Analysis of the soil

is best.)

Analysis of the soil and ash produced from incinerations beforehand by an analysis company. Identification of the pollution levels and pollutants

page 4

Construction and setting up Adding the harmful pollutant erasing soil purifying liquid

Purification of the polluted soil No need of expertise/ expert knowledge and can be set with common construction machines used in the building industry.

page 4

Related patents: new pollutant eraser against pollution from organic compounds: already applied for an international patent PCT/JP2009/n. 071170

Purifying liquid

Uses water, enzymes, zeolite, carbon and other natural materials as raw materials to be friendly to the environment. Safe and reassuring for users and residents near.

Special carbon and zeolite

Carbon is made from a special fine processing of plant based carbon. 30 angstrom sized pores form on the surface of the carbon creating various shapes of fullerene (soccer ball type, carbon nanotube type, buckyonion type, horn type) 10g of this special carbon with a specific surface area of 1200 to 2000 m²/g could absorb gas the volume of the Tokyo Dome.

Injection pump

Marking verification

Provided by Kuwahara corp.

Mixing the two together increases the purifying effect.

Our original liquid has both mixed together making it possible to clean VOC, oil polluted heavy metal pollution, DXN, PCB, harmful gases and other pollutions in a short period of 1 to 2 months.

Dioxin	Adsorption → decomposition → Adsorption/decomposition → Adsorption/decomposition → release
Heavy metals	Corrosion → oxidation/reduction → corrosion → oxidation/reduction → (repeats itself)

Setting curing

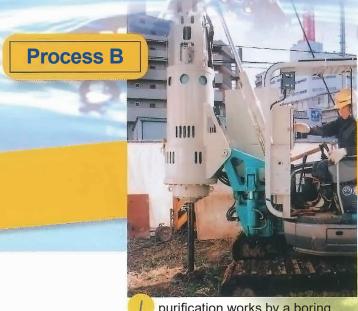
The liquid penetrating the soil will decompose pollutants in a short period of 1 to 2 months.

Detoxified soil

Analysis and setting up

Analysis of the soil

An analysis company will collect some soil by boring before the purification process begins. The collected soil and ashes will be analysed to determine the pollution levels and the pollutants present in the soil. This information will be taken into consideration for the process of application and type of purification liquid that will be used.



Planting the rod

Collecting the soil

The usually recommended expertise/ expert knowledge is unnecessary. We use a environmentally friendly purificator that doesn't use heat, apply pressure or produce any CO2. Nor is any special brand is needed. It is a eco friendly process that only kneads and stirs the soil. The depth of the pollution erasing is up to 100m*.

* separate consultation is necessary for purification deeper than 30m

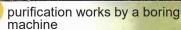
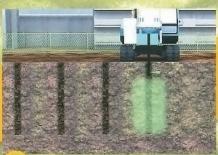



image of the placement The purification liquid providing device will be placed next to the polluted area

application can be chosen from depending on the circumstances.

cross section image (tangential circle type setting)
The boring machine can move making it possible to purify up to a specific deepness without the necessity of procedures such as drilling to apply the purification process fast and repetitively to the planned area.

The best method of setting up is chosen by considering the different factors of pollution?

Process

Accurate stirring and kneading operations are possible

Stirring and kneading operations done by stabilisers or blenders

approximately one meter depth from the surface of the pollution area

Process

no digging is needed.

underground indentation kneading done by a ground improvement machine

Boring machine approximately 3 to 100 meters depth from the surface of the pollution area

Process

Accurate stirring and kneading operations are possible

serial 4 axis combined method done by an all purpose ground quality improving machine

approximately 3 meters depth from the surface of the pollution area

we have different soil improvement machines suitable to different conditions

process A

stabiliser Mixes the ground up to 50cm from the surface

disperser Disperses and spreads the purification liquid

mixing fork
Removes the rocks in the soil
before application and mixes the
soil and the purification liquid
after application

process C

automatic small all purpose ground quality improving machine (front)

MR126 processing amount: 150m²/day

m²/day

big assembly type all purpose ground quality improving machine

Processing amount: 500m²/day

Mixes and purifies the liquid with soil brought up into the hopper by a power shovel.

Polluted

ground

Mechanism of the purification

adsorps and decomposes the pollutants in a short period of 1 to 2 months after processing for a healthy soil.

due to the effects of the harmful pollutant erasing soil purifying liquid, harmful pollutants get adsorped immediately after application and start to decompose. Also, by letting the soil set to cure, the effect increases, working on almost all pollutants in the soil.

Application

Resting and curing

Unharmed, healthy soil

Approximate time of rest needed for the soil

1	organic compounds (simple substance pollution)	3 to 4 weeks
2	organic compounds (composite pollution)	5 to 6 weeks
3	heavy metals (simple substance pollution)	5 to 6 weeks
4	heavy metals (composite pollution)	8 to 10 weeks
5	oil pollution	2 to 4 months

Examples of processing

Pollutant	Pollution concentration		State of the scene	Resting	Amount
	before processing	after processing		time	processed
TEC PCE TCE	2mg/L 0.53mg/L 0.0022mg/L 11mg/kg	0.003mg/L 0.002mg/L <0.0005mg/L <0.003mg/kg	Base of a mountain Inside the prefecture of yamanashi	4 weeks	100 m³
Oils	O5WT% 18%	0.1WT% 1.60%	GS site Factory site	6 weeks	200 m³
oils	13% 15%	0.010% 0.120%	Processing Centre for disposed oil Factory site	6 weeks	2,000 m³
CN	9.3mg/L 394mg/kg	0.04mg/L 34mg/kg	Inside the city of Yokohama Otoba town	6 weeks	360 m³
TCE PCE Cisl-2DCE	<1.224mg/L <3.296mg/L <0.089mg/L	<0.004mg/L 0.003mg/L 0.0mg/L	In the prefecture of Tokyo Residential area Shibuya ward	6 weeks	4,000 m ³
PCE Benzen PCE	4.6vol ppm 2.3 vol ppm 0.5 mg/L	<0.01 vol ppm <0.01 vol ppm <0.001 mg/L	Inside the prefecture of Shiga Inside the city of Hikone Factory site	6 weeks	1,500 m³
Pb	0.14mg/L	<0.001mg/L	factory site	6 weeks	3,000 m³
DXN	17,000pg-TEQ/g 4,500pg-TEQ/g 3,600pg-TEQ/g 8,600pg-TEQ/g	1,800pg-TEQ/g 19pg-TEQ/g 0pg-TEQ/L Drainage	Yokosuga	6 weeks	1,500 m³
DXN	13,000pg-TEQ/g	0.0057pg-TEQ/L 0.0054pg-TEQ/L	Cleaning center	5 weeks	100 m³
DXN	6-10ng-TEQ/g	16pg-TEQ/L 160pg-TEQ/L 0.55ng-TEQ/g	Furnace dismantling works	6 weeks	130 m³
DXN	1,500,000pg TEQHRGS/L	320pg TEQHRGS/L	Cleaning center	5 weeks	200 m³

Results of the PCB test

	Pollution concentration		State of the	Resting
	before processing	after processing	scene	time
1	100mg/L	0.145mg/L 0.0025mg/L <0.0005mg/L <0.0005mg/L	Factory site	3 days 7 days 3 weeks 4 weeks
2	1.5mg/kg	0.2mg/kg	Factory site	6 weeks
3	0.0022mg/L	<0.0005mg/L	Factory site	6 weeks
4	8.3mb/kg	0.05mg/kgg <0.0005mg/L	Inside a factory site	6 weeks
5	19%	<0.0003mg/L 5mg/kg	Government office	6 weeks
6	0.020mg/L 280mg/kg	<0.0005mg/L 120mg/kg	Owned property	6 weeks
7	15mg/kg	Less than 1.5mg/kg 0.1mg/kg	Inside a factory site	4 weeks 6 weeks
8	0.039mg/L	<0.0005mg/L	Inside the prefecture of toyama	6 weeks

Organic compound tests and Results of application

Pollutant	Pollution co	ncentration	State of	Resting	
	before processing	after processing	the scene	time	
TEC	0.53mg/L 11mg/kg	0.002mg/L 0.003mg/kg	Base of mountain	2 weeks	
Nitric acid pitch (Disposed oils)	Ph 1.5 Oil content 7% Tar content 30%	Ph6.6 <0.1% 0.20%	Object of a public works office at the foot of the fuji mountain	6 weeks	
TCE PCE Cisl-2DCE	<1.224mg/L <3.296mg/L <0.089mg/L	<0.004mg/L <0003mg/L <0.009mg/L	Residential area in shibuya ward, Tokyo	6 weeks	
PCE Benzen PCE	4.6vol ppm 2.3vol ppm 0.5mg/L	<0.01vol ppm <0.01vol ppm <0.001mg/L	Factory site inside hikone city, shiga	6 weeks	
TCE	2.8mg/L	0.005mg/L	Municipal land	6 weeks	
Application on Oil pollution	13% 14% 15% 14%	0.07% 0.04% 0.70% 0.05%	Inside yokohama city	5 weeks	
Major company of Petroleum Oil pollution	21,700mg/kg <20mg/kg 12,900mg/kg 10,100mg/kg	4,063mg/kg <20mg/kg 2,100mg/kg 1,963mg/kg		4 months	
TCB1.2.4.5 Tetrachlorobenzene TCB1.2.3.4 Tetrachlorobenzene	500mg/L 490mg/L	150mg/L 200mg/L		28 days 56 days 28 days 56 days	

Results of the dioxin tests

	Pollution concentration		State of the	Resting
	before processing	after processing	scene	time
1	2,100pg-TEQ/g	180pg-TEQ/g 23pg-TEQ/g	Cleaning center	3 weeks 6 weeks
2	1,400pg-TEQ/g	26pg-TEQ/g		6 weeks
3	13,000pg-TEQ/L	0.0057pg-TEQ/L 0.0054pg-TEQ/L	Cleaning center	5 weeks
4	1,900pg/g 51pg-TEQ/g	620pg/g 7.9pg-TEQ/g	Electricity company Cyclone ashes	3 weeks
5	66ng-TEQ/g	2.8ng-TEQ/g	Electricity company	4 weeks
6	130pg-TEQ/g	38pg-TEQ/g		3 weeks
7	8,060pg-TEQ/g	144.8pg-TEQ/g	Beauty center	3 weeks
8	65ng-TEQ/g Second process 4.4ng-TEQ/g	4.4ng-TEQ/g 0.5ng-TEQ/g	Cleaning center	6 weeks 8 weeks
9	580pg-TEQ/g	120pg-TEQ/g	Tago no ura port Port management office	6 weeks
10	1,200pg-TEQ/g	140pg-TEQ/g	Factory site	6 weeks
11	5,100pg-TEQ/g	64pg-TEQ/g	Super general contractor	6 weeks
12	6.4ng-TEQ/g	0.54ng-TEQ/g	Left over ashes from incineration	4 weeks

The environmental regulations on harmful compounds in Japan

secondary elution standard (mg/L	.) Soil environment standard (mg/l	L) Soil containing standard (mg/k@
ance type 1 vola	ntile organic comp	ounds
	<u>.</u>	
		150
0.5	0.01	agricultural land : 1mg/kg for every kg of ri
1.5	0.05	250
1.0	mustn't be detected	50
0.005	0.0005	15
undetected	mustn't be detected	15
0.3	0.01	150
0.3	0.01	150
0.3	0.01	150 agricultural land: 15mg/kg for every kg of
24.0	0.8	4,000
30.0	1.0	4,000
ance type 3 pes	ticides	

		_
		parathion, methyl dimedone and E
5.0	0.05	
	0.00	agricultural land :
	0.5	for fields, 125 mg/kg for every kg of so
2.0	0.2	
	0.02 0.04 0.2 0.4 0.02 0.1 3.0 0.06 0.3 0.1 2ance type 2 heaven of the second of the s	0.04

contacts